Recombinant heregulin-Pseudomonas exotoxin fusion proteins: interactions with the heregulin receptors and antitumor activity in vivo
Growth factor receptors provide unique opportunities for development of targeted anticancer therapy. Members of the type I receptor tyrosine kinase family, including epidermal growth factor (EGF) receptor (EGFR) and ErbB-2/neu, are often overexpressed in various human cancer cells, including breast....
Saved in:
Published in | Clinical cancer research Vol. 4; no. 4; pp. 993 - 1004 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.04.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Growth factor receptors provide unique opportunities for development of targeted anticancer therapy. Members of the type I
receptor tyrosine kinase family, including epidermal growth factor (EGF) receptor (EGFR) and ErbB-2/neu, are often overexpressed
in various human cancer cells, including breast. Recently, it has been shown that both ErbB-3 and ErbB-4 are receptors for
heregulin (HRG)/Neu differentiation factor. Eight chimeric toxins composed of the extracellular and EGF-like domains of four
different HRG isoforms and truncated Pseudomonas exotoxin (PE38KDEL) were constructed. The fusion proteins exhibited activity
similar to the native HRG in inducing ErbB receptors phosphorylation. The EGF-like domain of HRG13 and HRGbeta2 fused to PE38KDEL
showed the highest cytotoxic activity, with a IC50 of < or = 0.001 ng/ml. The alpha isoforms that were fused to PE38KDEL were
100-fold less active than the beta isoforms. The HRG-Pseudomonas exotoxin (PE) toxins show extremely high activity against
cells expressing ErbB-4 receptor, alone or together with other members of the ErbB receptor family. Cells that do not express
ErbB-4 but express ErbB-3 receptor, together with the ErbB-2 or EGFR, exhibited moderate sensitivity to HRG-PE toxins. HRG-PE
toxins have little or no activity against cells expressing EGFR, ErbB-2, or ErbB-3 alone. More than an 80% tumor regression
was achieved by intratumor injection of 1 microg of fusion proteins per day for 5 days. Continuous i.p. administration of
EGF-like domain of HRGbeta1-PE38KDEL for 7 days via a miniosmotic pump at a dose of 40 microg/kg/day inhibited the growth
of ErbB-4 receptor positive but not ErbB-4 receptor negative cell lines in athymic nude mice. We conclude that there is therapeutic
potential of HRG-PE toxins in the therapy of cancers overexpressing the ErbB-4 or ErbB-2 plus ErbB-3 receptors. |
---|---|
ISSN: | 1078-0432 1557-3265 |