Visual Radial Basis Q-Network

While reinforcement learning (RL) from raw images has been largely investigated in the last decade, existing approaches still suffer from a number of constraints. The high input dimension is often handled using either expert knowledge to extract handcrafted features or environment encoding through c...

Full description

Saved in:
Bibliographic Details
Published inPattern Recognition and Artificial Intelligence Vol. 13364; pp. 318 - 329
Main Authors Hautot, Julien, Teuliere, Céline, Azzaoui, Nourddine
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:While reinforcement learning (RL) from raw images has been largely investigated in the last decade, existing approaches still suffer from a number of constraints. The high input dimension is often handled using either expert knowledge to extract handcrafted features or environment encoding through convolutional networks. Both solutions require numerous parameters to be optimized. In contrast, we propose a generic method to extract sparse features from raw images with few trainable parameters. We achieved this using a Radial Basis Function Network (RBFN) directly on raw image. We evaluate the performance of the proposed approach for visual extraction in Q-learning tasks in the Vizdoom environment. Then, we compare our results with two Deep Q-Network, one trained directly on images and another one trained on feature extracted by a pretrained auto-encoder. We show that the proposed approach provides similar or, in some cases, even better performances with fewer trainable parameters while being conceptually simpler.
ISBN:3031092813
9783031092817
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-09282-4_27