The Potential of a Radiosensitive Intracerebral Probe to Monitor 18F-MPPF Binding in Mouse Hippocampus In Vivo

As mouse imaging has become more challenging in preclinical research, efforts have been made to develop dedicated PET systems. Although these systems are currently used for the study of physiopathologic murine models, they present some drawbacks for brain studies, including a low temporal resolution...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nuclear medicine (1978) Vol. 49; no. 7; pp. 1155 - 1161
Main Authors Desbree, Aurelie, Verdurand, Mathieu, Godart, Jeremy, Dubois, Albertine, Mastrippolito, Roland, Pain, Frederic, Pinot, Laurent, Delzescaux, Thierry, Gurden, Hirac, Zimmer, Luc, Laniece, Philippe
Format Journal Article
LanguageEnglish
Published United States Soc Nuclear Med 01.07.2008
Society of Nuclear Medicine
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As mouse imaging has become more challenging in preclinical research, efforts have been made to develop dedicated PET systems. Although these systems are currently used for the study of physiopathologic murine models, they present some drawbacks for brain studies, including a low temporal resolution that limits the pharmacokinetic study of radiotracers. The aim of this study was to demonstrate the ability of a radiosensitive intracerebral probe to measure the binding of a radiotracer in the mouse brain in vivo. The potential of a probe 0.25 mm in diameter for pharmacokinetic studies was assessed. First, Monte Carlo simulations followed by experimental studies were used to evaluate the detection volume and sensitivity of the probe and its adequacy for the size of loci in the mouse brain. Second, ex vivo autoradiography of 5-hydroxytryptamine receptor 1A (5-HT(1A)) receptors in the mouse brain was performed with the PET radiotracer 2'-methoxyphenyl-(N-2'-pyridinyl)-p-(18)F-fluorobenzamidoethylpiperazine ((18)F-MPPF). Finally, the binding kinetics of (18)F-MPPF were measured in vivo in both the hippocampus and the cerebellum of mice. Both the simulations and the experimental studies demonstrated the feasibility of using small probes to measure radioactive concentrations in specific regions of the mouse brain. Ex vivo autoradiography showed a heterogeneous distribution of (18)F-MPPF consistent with the known distribution of 5-HT(1A) in the mouse brain. Finally, the time-activity curves obtained in vivo were reproducible and validated the capacity of the new probe to accurately measure (18)F-MPPF kinetics in the mouse hippocampus. Our results demonstrate the ability of the tested radiosensitive intracerebral probe to monitor binding of PET radiotracers in anesthetized mice in vivo, with high temporal resolution suited for compartmental modeling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-5505
1535-5667
DOI:10.2967/jnumed.107.050047