Predictive genetic plan for a captive population of the Chinese goral

Captive breeding programs for endangered species can increase population numbers for eventual reintroduction to the wild. Captive populations are typically small and isolated, which results in inbreeding and reduction of genetic variability, and may lead to an increased risk of extinction. The Omkoi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 6; p. e0234064
Main Authors Jangtarwan, Kornsuang, Kamsongkram, Peerapong, Subpayakom, Navapong, Sillapaprayoon, Siwapech, Muangmai, Narongrit, Kongphoemph, Adisorn, Wongsodchuen, Apinya, Intapan, Sanya, Chamchumroon, Wiyada, Safoowong, Mongkol, Peyachoknagul, Surin, Duengkae, Prateep, Srikulnath, Kornsorn
Format Journal Article
LanguageEnglish
Published Public Library of Science 04.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Captive breeding programs for endangered species can increase population numbers for eventual reintroduction to the wild. Captive populations are typically small and isolated, which results in inbreeding and reduction of genetic variability, and may lead to an increased risk of extinction. The Omkoi Wildlife Breeding Center maintains the only Thai captive Chinese goral (Naemorhedus griseus) population, and has plans to reintroduce individuals into natural isolated populations. Genetic variability was assessed within the captive population using microsatellite data. Although no bottleneck was observed, genetic variability was low (allelic richness = 7.091 ± 0.756, H.sub.e = 0.455 ± 0.219; H.sub.e < H.sub.o) and 11 microsatellite loci were informative that likely reflect inbreeding. Estimates of small effective population size and limited numbers of founders, combined with wild-born individuals within subpopulations, tend to cause reduction of genetic variability over time in captive programs. This leads to low reproductive fitness and limited ability to adapt to environmental change, thereby increasing the risk of extinction. Management of captive populations as evolutionarily significant units with diverse genetic backgrounds offers an effective strategy for population recovery. Relocation of individuals among subpopulations, or introduction of newly captured wild individuals into the captive program will help to ensure the future security of Chinese goral. Implications for future conservation actions for the species are discussed herein.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0234064