The Molecular Identification and Antifungal Susceptibility of Clinical Isolates of IAspergillus/I Section IFlavi/I from Three French Hospitals

(1) Background: Aspergillus flavus is a cosmopolitan mold with medical, veterinary, and agronomic concerns. Its morphological similarity to other cryptic species of the Flavi section requires molecular identification techniques that are not routinely performed. For clinical isolates of Aspergillus s...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 11; no. 10
Main Authors Djenontin, Elie, Costa, Jean-Marc, Mousavi, Bita, Nguyen, Lin Do Ngoc, Guillot, Jacques, Delhaes, Laurence, Botterel, Françoise, Dannaoui, Eric
Format Journal Article
LanguageEnglish
Published MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:(1) Background: Aspergillus flavus is a cosmopolitan mold with medical, veterinary, and agronomic concerns. Its morphological similarity to other cryptic species of the Flavi section requires molecular identification techniques that are not routinely performed. For clinical isolates of Aspergillus section Flavi, we present the molecular identification, susceptibility to six antifungal agents, and clinical context of source patients. (2) Methods: One hundred forty fungal clinical isolates were included in the study. These isolates, recovered over a 15-year period (2001–2015), were identified based on their morphological characteristics as belonging to section Flavi. After the subculture, sequencing of a part of the β-tubulin and calmodulin genes was performed, and resistance to azole antifungals was screened on agar plates containing itraconazole and voriconazole. Minimum inhibitory concentrations were determined for 120 isolates by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. (3) Results: Partial β-tubulin and calmodulin sequences analysis showed that 138/140 isolates were A. flavus sensu stricto, 1 isolate was A. parasiticus/sojae, and 1 was A. nomiae. Many of the isolates came from samples collected in the context of respiratory tract colonization. Among probable or proven aspergillosis, respiratory infections were the most frequent, followed by ENT infections. Antifungal susceptibility testing was available for isolates (n = 120, all A. flavus ss) from one hospital. The MIC range (geometric mean MIC) in mg/L was 0.5–8 (0.77), 0.5–8 (1.03), 0.125–2 (0.25), 0.03–2 (0.22), 0.25–8 (1.91), and 0.03–0.125 (0.061) for voriconazole, isavuconazole, itraconazole, posaconazole, amphotericin B, and caspofungin, respectively. Two (1.67%) isolates showed resistance to isavuconazole according to current EUCAST breakpoints with MICs at 8 mg/L for isavuconazole and voriconazole. One of these two isolates was also resistant to itraconazole with MIC at 2 mg/L. (4) Conclusions: The present characterization of a large collection of Aspergillus belonging to the Flavi section confirmed that A. flavus ss is the predominant species. It is mainly implicated in respiratory and ENT infections. The emergence of resistance highlights the need to perform susceptibility tests on section Flavi isolates.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms11102429