Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with ILactobacillus brevis/I and IKluyveromyces marxianus/I Isolated from Traditional Fermented Milk
Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms is...
Saved in:
Published in | Foods Vol. 12; no. 19 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Traditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods12193704 |