Accumulation of Antioxidative Phenolics and Carotenoids Using Thermal Processing in Different Stages of IMomordica charantia/I Fruit
The bitter taste of M. charantia fruit limits its consumption, although the health benefits are well known. The thermal drying process is considered as an alternative method to reduce the bitterness. However, processing studies have rarely investigated physiochemical changes in fruit stages. The ant...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The bitter taste of M. charantia fruit limits its consumption, although the health benefits are well known. The thermal drying process is considered as an alternative method to reduce the bitterness. However, processing studies have rarely investigated physiochemical changes in fruit stages. The antioxidant activities and physiochemical properties of various fruit stages were investigated using different thermal treatments. The color of the thermally treated fruit varied depending on the temperature. When heat-treated for 3 days, the samples from the 30 °C and 90 °C treatments turned brown, while the color of the 60 °C sample did not change significantly. The antioxidant activities were increased in the thermally processed samples in a temperature-dependent manner, with an increase in phenolic compounds. In the 90 °C samples, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity presented a 6.8-fold higher level than that of nonthermal treatment in mature yellow fruit (S3), whereas the activity showed about a 3.1-fold higher level in immature green (S1) and mature green (S2) fruits. Regardless of the stages, the carotenoid content tended to decrease with increasing temperature. In terms of antioxidant activities, these results suggested that mature yellow fruit is better for consumption using thermal processing. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28031500 |