Ferritic stainless steel interconnects for protonic ceramic electrochemical cell stacks: Oxidation behavior and protective coatings
Protonic ceramic fuel or electrolysis cells (PCFC/PCEC) have shown promising performance at intermediate temperatures. However, these technologies have not yet been demonstrated in a stack, hence the oxidation behavior of the metallic interconnect under relevant operating environments is unknown. In...
Saved in:
Published in | International journal of hydrogen energy Vol. 44; no. 47 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
30.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Protonic ceramic fuel or electrolysis cells (PCFC/PCEC) have shown promising performance at intermediate temperatures. However, these technologies have not yet been demonstrated in a stack, hence the oxidation behavior of the metallic interconnect under relevant operating environments is unknown. In this work, ferritic stainless steels 430 SS, 441 SS, and Crofer 22 APU were investigated for their use as interconnect materials in the PCFC/PCEC stack. Specifically, the bare metal sheets were exposed to a humidified air environment in the temperature range from 450 °C to 650 °C, to simulate their application in a PCFC cathode or PCEC anode. Breakaway oxidation with rapid weight gain and Fe outward diffusion/oxidation was observed on all the selected stainless steel materials. A protective coating is deemed necessary to prevent the metallic interconnect from oxidizing. To mitigate the observed breakaway oxidation, state-of-the-art protective coatings, Y2O3, Ce0.02Mn1.49Co1.49O4, CuMn1.8O4 and Ce/Co, were applied to the stainless steel sheets and their oxidation resistance was investigated. Dual atmosphere testing further validated the effectiveness of the protective coatings in realistic PCFC/PCEC environments, with a hydrogen gradient across the interconnect. Several combinations of metal and coating material were found to be viable for use as the interconnect for PCFC/PCEC stacks. |
---|---|
Bibliography: | USDOE Office of Fossil Energy (FE) AC05-76RL01830; EE0008080; AC02-05CH11231; FE0023325 PNNL-SA-149461 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office |
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2019.08.041 |