Probing C60

Experiments involving the laser vaporization of graphite have indicated that one particular duster of carbon, C(60), is preeminently stable; this special stability may be evidence that C(60) can readily take the form of a hollow truncated icosahedron (a sort of molecular soccerball). If true, this s...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 242; no. 4881; pp. 1017 - 1022
Main Authors CURL, R. F, SMALLEY, R. E
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 18.11.1988
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experiments involving the laser vaporization of graphite have indicated that one particular duster of carbon, C(60), is preeminently stable; this special stability may be evidence that C(60) can readily take the form of a hollow truncated icosahedron (a sort of molecular soccerball). If true, this structure for C(60) would be the first example of a spherical aromatic molecule. In fact, because of symmetry properties unique to the number 60, it may be the most perfecty spherical, edgeless molecule possible. Its rapid formation in condensing carbon vapors and its extreme chemical and photophysical stability may have far-reaching implications in a number of areas, particularly combustion science and astrophysics. For these reasons C(60) and other dusters of carbon have continued to be the subject of intense research. This article provides a short review of the many new experimental probes of the properties of C(60) and related carbon dusters.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.242.4881.1017