Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization Under a Restricted Budget
Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer solutio...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 11353; pp. 175 - 179 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer solutions with equilibrated trade-offs between the objectives, we define a Pareto front center. We then modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes to maximize the expected hypervolume improvement, to restrict the search to the Pareto front center. The cumulated effects of the Gaussian Processes and the center targeting strategy lead to a particularly efficient convergence to a critical part of the Pareto set. |
---|---|
ISBN: | 3030053474 9783030053475 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-05348-2_15 |