Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization Under a Restricted Budget

Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer solutio...

Full description

Saved in:
Bibliographic Details
Published inLearning and Intelligent Optimization Vol. 11353; pp. 175 - 179
Main Authors Gaudrie, D., Riche, R. Le, Picheny, V., Enaux, B., Herbert, V.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer solutions with equilibrated trade-offs between the objectives, we define a Pareto front center. We then modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes to maximize the expected hypervolume improvement, to restrict the search to the Pareto front center. The cumulated effects of the Gaussian Processes and the center targeting strategy lead to a particularly efficient convergence to a critical part of the Pareto set.
ISBN:3030053474
9783030053475
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-05348-2_15