Optimization Models for a Real-World Snow Plow Routing Problem
In cold weather cities, snowstorms can have a significant disruptive effect on both mobility and safety, and consequently the faster that streets can be cleared the better. Yet in most cities, plans for snowplowing are developed using simple allocation schemes that while easy to implement can also b...
Saved in:
Published in | Integration of AI and OR Techniques in Constraint Programming Vol. 9676; pp. 229 - 245 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In cold weather cities, snowstorms can have a significant disruptive effect on both mobility and safety, and consequently the faster that streets can be cleared the better. Yet in most cities, plans for snowplowing are developed using simple allocation schemes that while easy to implement can also be quite inefficient. In this paper we consider the problem of optimizing the routes of a fleet of snow plowing vehicles, subject to street network topology, vehicle operating restrictions, and resource (salt, fuel) usage and replenishment constraints. We develop and analyze the performance of three different optimization models: a mixed-integer programming (MIP) model, a constraint programming (CP) model, and a constructive heuristic procedure that is amplified by an iterative improvement search. The models are evaluated on a set of snow plow routing problems of various sizes, constructed using Open Streets map data of Pittsburgh PA. Experimental results are presented that illustrate the differential strengths and weaknesses of each model, and suggest an alternative hybrid solution approach. |
---|---|
ISBN: | 3319339532 9783319339535 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-33954-2_17 |