A Data Utility-Driven Benchmark for De-identification Methods
De-identification is the process of removing the associations between data and identifying elements of individual data subjects. Its main purpose is to allow use of data while preserving the privacy of individual data subjects. It is thus an enabler for compliance with legal regulations such as the...
Saved in:
Published in | Trust, Privacy and Security in Digital Business Vol. 11711; pp. 63 - 77 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | De-identification is the process of removing the associations between data and identifying elements of individual data subjects. Its main purpose is to allow use of data while preserving the privacy of individual data subjects. It is thus an enabler for compliance with legal regulations such as the EU’s General Data Protection Regulation. While many de-identification methods exist, the required knowledge regarding technical implications of different de-identification methods is largely missing. In this paper, we present a data utility-driven benchmark for different de-identification methods. The proposed solution systematically compares de-identification methods while considering their nature, context and de-identified data set goal in order to provide a combination of methods that satisfies privacy requirements while minimizing losses of data utility. The benchmark is validated in a prototype implementation which is applied to a real life data set. |
---|---|
ISBN: | 3030278123 9783030278120 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-27813-7_5 |