Probability Estimation by an Adapted Genetic Algorithm in Web Insurance

In the insurance comparison domain, data constantly evolve, implying some difficulties to directly exploit them. Indeed, most of the classical learning methods require data descriptors equal to both learning and test samples. To answer business expectations, online forms where data come from are reg...

Full description

Saved in:
Bibliographic Details
Published inLearning and Intelligent Optimization Vol. 11353; pp. 225 - 240
Main Authors Bedenel, Anne-Lise, Jourdan, Laetitia, Biernacki, Christophe
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the insurance comparison domain, data constantly evolve, implying some difficulties to directly exploit them. Indeed, most of the classical learning methods require data descriptors equal to both learning and test samples. To answer business expectations, online forms where data come from are regularly modified. This constant modification of features and data descriptors makes statistical analysis more complex. A first work with statistical methods has been realized. This method relies on likelihood and models selection with the Bayesian information criterion. Unfortunately, this method is very expensive in computation time. Moreover, with this method, all models should be exhaustively compared, what is materially unattainable, so the search space is limited to a specific models family. In this work, we propose to use a genetic algorithm (GA) specifically adapted to overcome the statistical method defaults and shows its performances on real datasets provided by the company MeilleureAssurance.com.
ISBN:3030053474
9783030053475
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-05348-2_21