An Intelligent Weighted Fuzzy Time Series Model Based on a Sine-Cosine Adaptive Human Learning Optimization Algorithm and Its Application to Financial Markets Forecasting

Financial forecasting is an extremely challenging task given the complex, nonlinear nature of financial market systems. To overcome this challenge, we present an intelligent weighted fuzzy time series model for financial forecasting, which uses a sine-cosine adaptive human learning optimization (SCH...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Data Mining and Applications Vol. 10604; pp. 595 - 607
Main Authors Yang, Ruixin, Xu, Mingyang, He, Junyi, Ranshous, Stephen, Samatova, Nagiza F.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Financial forecasting is an extremely challenging task given the complex, nonlinear nature of financial market systems. To overcome this challenge, we present an intelligent weighted fuzzy time series model for financial forecasting, which uses a sine-cosine adaptive human learning optimization (SCHLO) algorithm to search for the optimal parameters for forecasting. New weighted operators that consider frequency based chronological order and stock volume are analyzed, and SCHLO is integrated to determine the effective intervals and weighting factors. Furthermore, a novel short-term trend repair operation is developed to complement the final forecasting process. Finally, the proposed model is applied to four world major trading markets: the Dow Jones Index (DJI), the German Stock Index (DAX), the Japanese Stock Index (NIKKEI), and Taiwan Stock Index (TAIEX). Experimental results show that our model is consistently more accurate than the state-of-the-art baseline methods. The easy implementation and effective forecasting performance suggest our proposed model could be a favorable market application prospect.
ISBN:9783319691787
3319691783
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-69179-4_42