A Quasi-Polynomial Approximation for the Restricted Assignment Problem
Scheduling jobs on unrelated machines and minimizing the makespan is a classical problem in combinatorial optimization. A job j has a processing time $$p_{ij}$$ for every machine i. The best polynomial algorithm known for this problem goes back to Lenstra et al. and has an approximation ratio of 2....
Saved in:
Published in | Integer Programming and Combinatorial Optimization Vol. 10328; pp. 305 - 316 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319592497 3319592491 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-59250-3_25 |
Cover
Loading…
Summary: | Scheduling jobs on unrelated machines and minimizing the makespan is a classical problem in combinatorial optimization. A job j has a processing time $$p_{ij}$$ for every machine i. The best polynomial algorithm known for this problem goes back to Lenstra et al. and has an approximation ratio of 2. In this paper we study the Restricted Assignment problem, which is the special case where $$p_{ij}\in \{p_j,\infty \}$$ . We present an algorithm for this problem with an approximation ratio of $$11/6 + \epsilon $$ and quasi-polynomial running time $$n^{\mathcal O(1/\epsilon \log (n))}$$ for every $$\epsilon > 0$$ . This closes the gap to the best estimation algorithm known for the problem with regard to quasi-polynomial running time. |
---|---|
Bibliography: | Research supported by German Research Foundation (DFG) project JA 612/15-1. Original Abstract: Scheduling jobs on unrelated machines and minimizing the makespan is a classical problem in combinatorial optimization. A job j has a processing time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{ij}$$\end{document} for every machine i. The best polynomial algorithm known for this problem goes back to Lenstra et al. and has an approximation ratio of 2. In this paper we study the Restricted Assignment problem, which is the special case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{ij}\in \{p_j,\infty \}$$\end{document}. We present an algorithm for this problem with an approximation ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$11/6 + \epsilon $$\end{document} and quasi-polynomial running time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal O(1/\epsilon \log (n))}$$\end{document} for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. This closes the gap to the best estimation algorithm known for the problem with regard to quasi-polynomial running time. |
ISBN: | 9783319592497 3319592491 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-59250-3_25 |