An Interactive Web-Based Toolset for Knowledge Discovery from Short Text Log Data

Many companies maintain human-written logs to capture data on events such as workplace incidents and equipment failures. However, the sheer volume and unstructured nature of this data prevent it from being utilised for knowledge acquisition. Our web-based prototype software system provides a cohesiv...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Data Mining and Applications Vol. 10604; pp. 853 - 858
Main Authors Stewart, Michael, Liu, Wei, Cardell-Oliver, Rachell, Griffin, Mark
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many companies maintain human-written logs to capture data on events such as workplace incidents and equipment failures. However, the sheer volume and unstructured nature of this data prevent it from being utilised for knowledge acquisition. Our web-based prototype software system provides a cohesive computational methodology for analysing and visualising log data that requires minimal human involvement. It features an interface to support customisable, modularised log data processing and knowledge discovery. This enables owners of event-based datasets containing short textual descriptions, such as occupational health & safety officers and machine operators, to identify latent knowledge not previously acquirable without significant time and effort. The software system comprises five distinct stages, corresponding to standard data mining milestones: exploratory analysis, data warehousing, association rule mining, entity clustering, and predictive analysis. To the best of our knowledge, it is the first dedicated system to computationally analyse short text log data and provides a powerful interface that visualises the analytical results and supports human interaction.
ISBN:9783319691787
3319691783
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-69179-4_61