Personality-Based User Modeling for Music Recommender Systems

Applications are getting increasingly interconnected. Al-though the interconnectedness provide new ways to gather information about the user, not all user information is ready to be directly implemented in order to provide a personalized experience to the user. Therefore, a general model is needed t...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 9853; pp. 254 - 257
Main Authors Ferwerda, Bruce, Schedl, Markus
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Applications are getting increasingly interconnected. Al-though the interconnectedness provide new ways to gather information about the user, not all user information is ready to be directly implemented in order to provide a personalized experience to the user. Therefore, a general model is needed to which users’ behavior, preferences, and needs can be connected to. In this paper we present our works on a personality-based music recommender system in which we use users’ personality traits as a general model. We identified relationships between users’ personality and their behavior, preferences, and needs, and also investigated different ways to infer users’ personality traits from user-generated data of social networking sites (i.e., Facebook, Twitter, and Instagram). Our work contributes to new ways to mine and infer personality-based user models, and show how these models can be implemented in a music recommender system to positively contribute to the user experience.
ISBN:9783319461304
3319461303
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-46131-1_29