The second activating glucokinase mutation (A456V): Implications for glucose homeostasis and diabetes therapy

In this study, a second case of hyperinsulinemic hypoglycemia due to activation of glucokinase is reported. The 14-year-old proband had a history of neonatal hypoglycemia, treated with diazoxide. He was admitted with coma and convulsions due to nonketotic hypoglycemia. His BMI was 34 kg/m(2), and hi...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 51; no. 4; pp. 1240 - 1246
Main Authors CHRISTESEN, Henrik B. T, JACOBSEN, Bendt B, MATSCHINSKY, Franz M, BARBETTI, Fabrizio, ODILI, Stella, BUETTGER, Carol, CUESTA-MUNOZ, Antonio, HANSEN, Torben, BRUSGAARD, Klaus, MASSA, Ornella, MAGNUSON, Mark A, SHIOTA, Chiyo
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.04.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a second case of hyperinsulinemic hypoglycemia due to activation of glucokinase is reported. The 14-year-old proband had a history of neonatal hypoglycemia, treated with diazoxide. He was admitted with coma and convulsions due to nonketotic hypoglycemia. His BMI was 34 kg/m(2), and his fasting blood glucose ranged from 2.1 to 2.7 mmol/l, associated with inappropriately high serum levels of insulin, C-peptide, and proinsulin. An oral glucose tolerance test (OGTT) showed exaggerated responses of these peptides followed by profound hypoglycemia. Treatment with diazoxide and chlorothiazide was effective. His mother never had clinical hypoglycemic symptoms, even though her fasting blood glucose ranged from 2.9 to 3.5 mmol/l. Increases in serum insulin, C-peptide, and proinsulin in response to an OGTT suggested a lower threshold for glucose-stimulated insulin release (GSIR). Screening for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the concentration of glucose needed to achieve the half-maximal rate of phosphorylation) from 8.04 (wild-type) to 2.53 mmol/l. The mutant's Hill coefficient was decreased, and its maximal specific activity k(cat) was increased. Mathematical modeling predicted a markedly lowered GSIR threshold of 1.5 mmol/l. The theoretical and practical implications are manifold and significant.
Bibliography:ObjectType-Case Study-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-2
ISSN:0012-1797
1939-327X
DOI:10.2337/diabetes.51.4.1240