Direct and Continuous Measurement of Phospholipase D Activities Using the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline
Phospholipase D (PLD) hydrolyzes phospholipids to form phosphatidic acid (PA) and the corresponding headgroup. To date, PLD has been linked to several pathologies, such as cancer, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous o...
Saved in:
Published in | Methods in molecular biology (Clifton, N.J.) Vol. 1835; p. 129 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Phospholipase D (PLD) hydrolyzes phospholipids to form phosphatidic acid (PA) and the corresponding headgroup. To date, PLD has been linked to several pathologies, such as cancer, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released upon phosphatidylcholine (PC) hydrolysis. Therefore, we designed a PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline. This assay exhibits a strong fluorescence signal upon Ca
complexation with the PLD-generated PA and is not limited to PC as the substrate but allows the use of natural phospholipids with various headgroups. Besides, this easy-to-handle assay allows to monitor prokaryotic and eukaryotic PLD activities in a continuous way and on a microplate scale. |
---|---|
ISSN: | 1940-6029 |
DOI: | 10.1007/978-1-4939-8672-9_6 |