Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range

Although water splitting has been successfully achieved in recent years, the design of highly efficient bifunctional catalysts applicable across a broad pH range, especially in harsh acidic conditions, remains full of challenges. Here, we report a general strategy to create transition metal-doped ul...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 11; pp. 6411 - 6416
Main Authors Wang, Juan, Ji, Yujin, Yin, Rongguan, Li, Youyong, Shao, Qi, Huang, Xiaoqing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/c9ta00598f

Cover

Loading…
More Information
Summary:Although water splitting has been successfully achieved in recent years, the design of highly efficient bifunctional catalysts applicable across a broad pH range, especially in harsh acidic conditions, remains full of challenges. Here, we report a general strategy to create transition metal-doped ultrathin RuO2 nanowires (M-doped RuO2 NWs, M = Fe/Co/Ni) featuring a networked structure, a high density of defects and grain boundaries, as superior water splitting catalysts over a broad pH range. The detailed electrocatalytic results reveal that the M-doped RuO2 NWs exhibit a volcano-like electrocatalytic performance as a function of the transition metal doped. The optimized Co-doped RuO2 NWs exhibit superior oxygen evolution reaction activity with an overpotential of 200 mV to generate a current density of 10 mA cm−2 under acidic conditions, while the Ni-doped RuO2 NWs show robust hydrogen evolution reaction activity with an overpotential of 52 mV in an alkaline environment. First-principles calculations show that these distinct electrocatalytic performances can be attributed to the balanced adsorption free energy of the intermediates triggered by modulation of d-band center theory after transition metal doping. Significantly, the M-doped RuO2 NWs are further demonstrated as the best catalysts for overall water splitting with superior activities and excellent stabilities under universal pH conditions, and the optimized Co-doped RuO2 NWs‖Ni-doped RuO2 NWs deliver a very low potential of 1.537 V and a small Tafel slope of 58.2 mV dec−1 under acidic conditions, which are much lower values than those of the commercial Ir/C‖Pt/C system (1.642 mV and 80.2 mV dec−1). We have therefore demonstrated an unprecedented class of electrocatalysts with excellent performances for electrochemical water splitting across a broad pH range.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2050-7488
2050-7496
2050-7496
DOI:10.1039/c9ta00598f