Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx
Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/ceri...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 16; pp. 8798 - 8802 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/cerium oxide (Bi/CeOx) catalyst, which exhibits not only high current density (149 mA cm−2), but also unprecedented production rate (2600 μmol h−1 cm−2) with high Faradaic efficiency (FE, 92 %) for HCOOH generation in aqueous media. Furthermore, Bi/CeOx also shows favorable stability over 34 h. We hope this work could offer an attractive and promising strategy to develop efficient catalysts for CO2 electroreduction with superior activity and desirable stability.
The limited current density, production rate as well as selectivity hinder the improvement of HCOOH production from CO2 electroreduction. Here, bismuth/cerium oxide (Bi/CeOx) displays outstanding performances for CO2 electroreduction to HCOOH, which not only shows excellent selectivity, but also achieves a high current density (149 mA cm−2) and especially the maximum HCOOH production rate (2600 μmol h−1 cm−2) ever reported. |
---|---|
Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202015713 |