Computational Intelligence for Locating Garbage Accumulation Points in Urban Scenarios
This article presents computational intelligence methods for solving the problem of locating garbage accumulation points in urban scenarios, which is a relevant problem in nowadays smart cities to optimize budget and reduce negative environmental and social impacts. The problem model considers reduc...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 11353; pp. 411 - 426 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article presents computational intelligence methods for solving the problem of locating garbage accumulation points in urban scenarios, which is a relevant problem in nowadays smart cities to optimize budget and reduce negative environmental and social impacts. The problem model considers reducing the investment costs, enhance the proportion of citizens served by bins, and the accessibility to the system. A family of heuristics based on the generic PageRank schema and a mutiobjective evolutionary algorithm are proposed. Experimental evaluation performed on real scenarios on the city of Montevideo, Uruguay, demonstrates the effectiveness of the proposed approaches. The methods allow computing plannings with different trade-off between the problem objectives and improving over the current planning. |
---|---|
ISBN: | 3030053474 9783030053475 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-05348-2_34 |