Congruences modulo 8 for (2,k)-regular overpartitions for odd k>1
In this paper, we study various arithmetic properties of the function p ¯ 2 , k ( n ) , which denotes the number of ( 2 , k ) -regular overpartitions of n with odd k > 1 . We prove several infinite families of congruences modulo 8 for p ¯ 2 , k ( n ) . For example, we find that for all non-negati...
Saved in:
Published in | Arabian Journal of Mathematics Vol. 7; no. 2; pp. 61 - 75 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-5343 2193-5351 2193-5351 |
DOI | 10.1007/s40065-017-0195-z |
Cover
Summary: | In this paper, we study various arithmetic properties of the function
p
¯
2
,
k
(
n
)
, which denotes the number of
(
2
,
k
)
-regular overpartitions of
n
with odd
k
>
1
. We prove several infinite families of congruences modulo 8 for
p
¯
2
,
k
(
n
)
. For example, we find that for all non-negative integers
β
,
n
and
k
≡
1
(
mod
8
)
,
p
¯
2
,
k
(
2
1
+
β
(
16
n
+
14
)
)
≡
0
(
mod
8
)
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2193-5343 2193-5351 2193-5351 |
DOI: | 10.1007/s40065-017-0195-z |