TechMiner: Extracting Technologies from Academic Publications

In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, resea...

Full description

Saved in:
Bibliographic Details
Published inKnowledge Engineering and Knowledge Management pp. 463 - 479
Main Authors Osborne, Francesco, de Ribaupierre, Hélène, Motta, Enrico
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, researchers are adding new entities to these repositories to develop a richer model of the scholarly domain. In this paper, we introduce TechMiner, a new approach, which combines NLP, machine learning and semantic technologies, for mining technologies from research publications and generating an OWL ontology describing their relationships with other research entities. The resulting knowledge base can support a number of tasks, such as: richer semantic search, which can exploit the technology dimension to support better retrieval of publications; richer expert search; monitoring the emergence and impact of new technologies, both within and across scientific fields; studying the scholarly dynamics associated with the emergence of new technologies; and others. TechMiner was evaluated on a manually annotated gold standard and the results indicate that it significantly outperforms alternative NLP approaches and that its semantic features improve performance significantly with respect to both recall and precision.
ISBN:9783319490038
3319490036
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-49004-5_30