Patent Quality Valuation with Deep Learning Models
Patenting is of significant importance to protect intellectual properties for individuals, organizations and companies. One of practical demands is to automatically evaluate the quality of new patents, i.e., patent valuation, which can be used for patent indemnification and patent portfolio. However...
Saved in:
Published in | Database Systems for Advanced Applications Vol. 10828; pp. 474 - 490 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Patenting is of significant importance to protect intellectual properties for individuals, organizations and companies. One of practical demands is to automatically evaluate the quality of new patents, i.e., patent valuation, which can be used for patent indemnification and patent portfolio. However, to solve this problem, most traditional methods just conducted simple statistical analyses based on patent citation networks, while ignoring much crucial information, such as patent text materials and many other useful attributes. To that end, in this paper, we propose a Deep Learning based Patent Quality Valuation (DLPQV) model which can integrate the above information to evaluate the quality of patents. It consists of two parts: Attribute Network Embedding (ANE) and Attention-based Convolutional Neural Network (ACNN). ANE learns the patent embedding from citation networks and attributes, and ACNN extracts the semantic representation from patent text materials. Then their outputs are concatenated to predict the quality of new patents. The experimental results on a real-world patent dataset show our method outperforms baselines significantly with respect to patent valuation. |
---|---|
ISBN: | 331991457X 9783319914572 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-91458-9_29 |