Hyper-Reactive Tabu Search for MaxSAT
Local search metaheuristics have been developed as a general tool for solving hard combinatorial search problems. However, in practice, metaheuristics very rarely work straight out of the box. An expert is frequently needed to experiment with an approach and tweak parameters, remodel the problem, an...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 11353; pp. 309 - 325 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Local search metaheuristics have been developed as a general tool for solving hard combinatorial search problems. However, in practice, metaheuristics very rarely work straight out of the box. An expert is frequently needed to experiment with an approach and tweak parameters, remodel the problem, and adjust search concepts to achieve a reasonably effective approach. Reactive search techniques aim to liberate the user from having to manually tweak all of the parameters of their approach. In this paper, we focus on one of the most well-known and widely used reactive techniques, reactive tabu search (RTS) [7], and propose a hyper-parameterized tabu search approach that dynamically adjusts key parameters of the search using a learned strategy. Experiments on MaxSAT show that this approach can lead to state-of-the-art performance without any expert user involvement, even when the metaheuristic knows nothing more about the underlying combinatorial problem than how to evaluate the objective function. |
---|---|
ISBN: | 3030053474 9783030053475 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-05348-2_27 |