Portfolio Optimization via a Surrogate Risk Measure: Conditional Desirability Value at Risk (CDVaR)
A risk measure that specifies minimum capital requirements is the amount of cash that must be added to a portfolio to make its risk acceptable to regulators. The 2008 financial crisis highlighted the demise of the most widely used risk measure, Value-at-Risk. Unlike the Conditional VaR model of Rock...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 11353; pp. 257 - 270 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A risk measure that specifies minimum capital requirements is the amount of cash that must be added to a portfolio to make its risk acceptable to regulators. The 2008 financial crisis highlighted the demise of the most widely used risk measure, Value-at-Risk. Unlike the Conditional VaR model of Rockafellar & Uryasev, VaR ignores the possibility of abnormal returns and is not even a coherent risk measure as defined by Pflug. Both VaR and CVaR portfolio optimizers use asset-price return histories. Our novelty here is introducing an annual Desirability Value (DV) for a company and using the annual differences of DVs in CVaR optimization, instead of simply utilizing annual stock-price returns. The DV of a company is the perpendicular distance from the fundamental position of that company to the best separating hyperplane $$H_0$$ that separates profitable companies from losers during training. Thus, we introduce both a novel coherent surrogate risk measure, Conditional-Desirability-Value-at-Risk (CDVaR) and a direction along which to reduce (downside) surrogate risk, the perpendicular to $$H_0$$ . Since it is a surrogate measure, CDVaR optimization does not produce a cash amount as the risk measure. However, the associated CVaR (or VaR) is trivially computable. Our machine-learning-fundamental-analysis-based CDVaR portfolio optimization results are comparable to those of mainstream price-returns-based CVaR optimizers. |
---|---|
Bibliography: | Original Abstract: A risk measure that specifies minimum capital requirements is the amount of cash that must be added to a portfolio to make its risk acceptable to regulators. The 2008 financial crisis highlighted the demise of the most widely used risk measure, Value-at-Risk. Unlike the Conditional VaR model of Rockafellar & Uryasev, VaR ignores the possibility of abnormal returns and is not even a coherent risk measure as defined by Pflug. Both VaR and CVaR portfolio optimizers use asset-price return histories. Our novelty here is introducing an annual Desirability Value (DV) for a company and using the annual differences of DVs in CVaR optimization, instead of simply utilizing annual stock-price returns. The DV of a company is the perpendicular distance from the fundamental position of that company to the best separating hyperplane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} that separates profitable companies from losers during training. Thus, we introduce both a novel coherent surrogate risk measure, Conditional-Desirability-Value-at-Risk (CDVaR) and a direction along which to reduce (downside) surrogate risk, the perpendicular to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document}. Since it is a surrogate measure, CDVaR optimization does not produce a cash amount as the risk measure. However, the associated CVaR (or VaR) is trivially computable. Our machine-learning-fundamental-analysis-based CDVaR portfolio optimization results are comparable to those of mainstream price-returns-based CVaR optimizers. |
ISBN: | 3030053474 9783030053475 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-05348-2_23 |