Azo-linked porous organic polymers: robust and time-efficient synthesis via NaBH4-mediated reductive homocoupling on polynitro monomers and adsorption capacity towards aniline in water
Time-efficient synthetic methods of porous organic polymers are searched in order to extend the applications of these materials. In this work, we show a robust and time-efficient synthetic method of azo-linked porous organic polymers named Azo-POPs based on a NaBH4-mediated reductive coupling polyme...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 14; pp. 5608 - 5612 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Time-efficient synthetic methods of porous organic polymers are searched in order to extend the applications of these materials. In this work, we show a robust and time-efficient synthetic method of azo-linked porous organic polymers named Azo-POPs based on a NaBH4-mediated reductive coupling polymerization on well-known polynitro monomers. Azo-POPs were found to have a high Brunauer–Emmett–Teller (BET) surface area and potential for aniline adsorption. Interestingly, Azo-POP-1 showed adsorption capacity towards aniline as high as 1059.68 mg g−1 at 293 K, which surpassed that of adsorbent materials reported in the literature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2050-7488 2050-7496 2050-7496 |
DOI: | 10.1039/c8ta00341f |