A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors

Titrating the aqueous solution of equimolar RE(NO3)3 and (NH4)2SO4 with NH4OH to pH~9 at ~4°C produced an amorphous precursor that yielded phase‐pure and well‐dispersed RE2O2S nanopowder (RE = Gd0.99Tb0.01; GOS:Tb) via a RE2O2SO4 intermediate upon annealing in H2. The powders calcined at the typical...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 102; no. 6; pp. 3296 - 3306
Main Authors Wang, Xuejiao, Meng, Qinghong, Li, Meiting, Wang, Xiaojun, Wang, Zhihao, Zhu, Qi, Li, Ji‐Guang
Format Journal Article
LanguageEnglish
Japanese
Published Columbus Wiley 01.06.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Titrating the aqueous solution of equimolar RE(NO3)3 and (NH4)2SO4 with NH4OH to pH~9 at ~4°C produced an amorphous precursor that yielded phase‐pure and well‐dispersed RE2O2S nanopowder (RE = Gd0.99Tb0.01; GOS:Tb) via a RE2O2SO4 intermediate upon annealing in H2. The powders calcined at the typical temperatures of 700/1200°C exhibited unimodal size distributions and have the average crystallize sizes of ~17/55 nm, average particle sizes of ~284/420 nm, and specific surface areas of ~14.62/4.53 m2/g (equivalent particle sizes: ~56/180 nm). The 1200°C product exhibited sharp green luminescence at ~544 nm (FWHM = 2.3 nm; λex = 275 nm), with an absolute quantum yield of ~24.8% and a fluorescence lifetime of ~1.34 ms at room temperature. It was also shown that the powder possesses favorable thermal stability (the activation energy for thermal quenching of luminescence ~0.305 eV) and is stable under electron beam irradiation up to 7 kV and 50 μA. The synthetic technique has the advantages of scalability and favorable dispersion and high chemical/phase purity for GOS powder, which may allow the sintering of scintillation ceramics at lower temperatures. Gd2O2S:Tb nanophosphor with favorable dispersion and high chemical/phase purity was obtained via a low temperature precipitation approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.16190