A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors
Titrating the aqueous solution of equimolar RE(NO3)3 and (NH4)2SO4 with NH4OH to pH~9 at ~4°C produced an amorphous precursor that yielded phase‐pure and well‐dispersed RE2O2S nanopowder (RE = Gd0.99Tb0.01; GOS:Tb) via a RE2O2SO4 intermediate upon annealing in H2. The powders calcined at the typical...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 102; no. 6; pp. 3296 - 3306 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Columbus
Wiley
01.06.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Titrating the aqueous solution of equimolar RE(NO3)3 and (NH4)2SO4 with NH4OH to pH~9 at ~4°C produced an amorphous precursor that yielded phase‐pure and well‐dispersed RE2O2S nanopowder (RE = Gd0.99Tb0.01; GOS:Tb) via a RE2O2SO4 intermediate upon annealing in H2. The powders calcined at the typical temperatures of 700/1200°C exhibited unimodal size distributions and have the average crystallize sizes of ~17/55 nm, average particle sizes of ~284/420 nm, and specific surface areas of ~14.62/4.53 m2/g (equivalent particle sizes: ~56/180 nm). The 1200°C product exhibited sharp green luminescence at ~544 nm (FWHM = 2.3 nm; λex = 275 nm), with an absolute quantum yield of ~24.8% and a fluorescence lifetime of ~1.34 ms at room temperature. It was also shown that the powder possesses favorable thermal stability (the activation energy for thermal quenching of luminescence ~0.305 eV) and is stable under electron beam irradiation up to 7 kV and 50 μA. The synthetic technique has the advantages of scalability and favorable dispersion and high chemical/phase purity for GOS powder, which may allow the sintering of scintillation ceramics at lower temperatures.
Gd2O2S:Tb nanophosphor with favorable dispersion and high chemical/phase purity was obtained via a low temperature precipitation approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.16190 |