Distributed PARAFAC Decomposition Method Based on In-memory Big Data System
We propose IM-PARAFAC, a PARAFAC tensor decomposition method that enables rapid processing of large scalable tensors in Apache Spark for distributed in-memory big data management systems. We consider the memory overflow that occurs when processing large amounts of data because of running on in-memor...
Saved in:
Published in | Database Systems for Advanced Applications Vol. 11448; pp. 292 - 295 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030185893 9783030185893 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-18590-9_31 |
Cover
Loading…
Summary: | We propose IM-PARAFAC, a PARAFAC tensor decomposition method that enables rapid processing of large scalable tensors in Apache Spark for distributed in-memory big data management systems. We consider the memory overflow that occurs when processing large amounts of data because of running on in-memory. Therefore, the proposed method, IM-PARAFAC, is capable of dividing and decomposing large input tensors. It can handle large tensors even in small, distributed environments. The experimental results indicate that the proposed IM-PARAFAC enables handling of large tensors and reduces the execution time. |
---|---|
ISBN: | 3030185893 9783030185893 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-18590-9_31 |