Arresting the biosynthesis of Lipid A to hinder Escherichia coli and Pseudomonas aeruginosa through fatty diglyceride

Lipid A is a fragment of lipopolysaccharide (LPS) in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa; hence inhibition of its biosynthesis is one of the plausible ways of preventing such bacteria from growth and thus preventing gastrointestinal diseases caused by Escherich...

Full description

Saved in:
Bibliographic Details
Published inPakistan journal of pharmaceutical sciences Vol. 36; no. 2; pp. 409 - 415
Main Authors Khadim Sheikh, Hamdullah, Arshad, Tanzila, Habib, Uzma, Zahra Mirmohammadi, Seyedeh, Usman, Rafia, Mohtasheemul Hassan, Muhammad
Format Journal Article
LanguageEnglish
Published Pakistan Pakistan Journal of Pharmaceutical Sciences 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lipid A is a fragment of lipopolysaccharide (LPS) in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa; hence inhibition of its biosynthesis is one of the plausible ways of preventing such bacteria from growth and thus preventing gastrointestinal diseases caused by Escherichia coli and pseudomonas aeruginosa. This research revolves around the development of antibiotic glyceride derivatives for the inhibition of the biosynthesis of lipid A. To target the enzymes involved in the biosynthesis of lipid A, four N,N-dimethylaminobenzoate moiety containing fatty diglyceride derivatives were synthesized through a multi-step synthetic scheme starting from glycerol. The molecular structure of the targeted molecules and synthesized intermediates in the synthetic scheme were confirmed by detailed structural analysis through N-NMR, mass and IR spectroscopic techniques. Antibacterial activity was evaluated against the gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The derivatives also underwent docking analysis on the pdb's of enzymatic catalysts involved in the biosynthesis of lipid A using AutoDock Vina package. All synthesized fatty esters gave good antibacterial activity and binding energy upto -7 kcal/mol in the docking analysis. A structure-property relationship was established between alkyl chain lengths of diglycerides and their resultant binding energies. These molecules and their resultant activity can assist in further designing and retrosynthesis of molecular derivatives of drug molecules with lipid A biosynthesis as target for its inhibition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1011-601X
DOI:10.36721/PJPS.2023.36.2.REG.409-415.1