Mg2+ Doped into Electro-synthesized HKUST-1 and Their Initial Hydrogen Sorption Properties

The hydrogen storage materials are essentially play important roles in supporting the utilization of hydrogen as a promising alternative energy. Several innovative materials have been proposed and intensively investigated in this regard, including Metal-Organic Framework (MOFs). MOFs type HKUST-1 [C...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 299; no. 1
Main Authors Lestari, W W, Ni'maturrohmah, D, Arrozi, U S F, Suwarno, H
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The hydrogen storage materials are essentially play important roles in supporting the utilization of hydrogen as a promising alternative energy. Several innovative materials have been proposed and intensively investigated in this regard, including Metal-Organic Framework (MOFs). MOFs type HKUST-1 [Cu3(BTC)2] (BTC = benzene-tri-carboxylate) is the most explored materials in hydrogen storage. In this research, HKUST-1 was electro-synthesized under 15 volt for 1.5 h. This material was ex-situ modified with magnesium(II) ion with variation: 3, 5 and 10 wt% to add attractive sites for hydrogen to form Mg2+@HKUST-1. The final materials were characterized by XRD, FTIR, SEM-EDX, and SAA. Hydrogen sorption measurement was conducted using Sievert system at 30 and 80 °C with pressure from 0.2 to 1.5 bar in 10 minutes for each condition. According to XRD analysis, the basic structure of Mg2+@HKUST-1 was remaining stable. In contrary, SEM analysis showed that HKUST-1 morphology was changed after modification with Mg2+. In addition, the surface area of materials significantly increased from 372.112 to 757.617m2/g, based on SAA analysis. The presence of Mg2+ in the HKUST-1 increased the hydrogen sorption capacity up to 0.475 wt% at 1.4 bar at 30 °C and 0.256 wt% at 80 °C (1.4 bar).
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/299/1/012031