Mechanism of Mechanochemical C−H Bond Activation in an Azobenzene Substrate by PdII Catalysts

Mechanism of C−H bond activation by various PdII catalysts under milling conditions has been studied by in situ Raman spectroscopy. Common PdII precursors, that is PdCl2, [Pd(OAc)2]3, PdCl2(MeCN)2 and [Pd(MeCN)4][BF4]2, have been employed for the activation of one or two C−H bonds in an unsymmetrica...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 42; pp. 10672 - 10682
Main Authors Bjelopetrović, Alen, Lukin, Stipe, Halasz, Ivan, Užarević, Krunoslav, Đilović, Ivica, Barišić, Dajana, Budimir, Ana, Juribašić Kulcsár, Marina, Ćurić, Manda
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mechanism of C−H bond activation by various PdII catalysts under milling conditions has been studied by in situ Raman spectroscopy. Common PdII precursors, that is PdCl2, [Pd(OAc)2]3, PdCl2(MeCN)2 and [Pd(MeCN)4][BF4]2, have been employed for the activation of one or two C−H bonds in an unsymmetrical azobenzene substrate. The C−H activation was achieved by all used PdII precursors and their reactivity increases in the order [Pd(OAc)2]3<PdCl2(MeCN)2<PdCl2<[Pd(MeCN)4][BF4]2. In situ Raman monitoring in combination with stepwise ex situ NMR, IR and PXRD experiments has provided direct probing of the reaction mechanism and kinetics, and revealed how liquids of different acid‐base properties and proticity as well as selected solids used as additives modify precursors or intermediates and their reactivity. Reaction intermediates that were isolated and structurally characterized agree with the observed species during reaction. In situ Raman spectroscopy has also enabled the derivation of reaction profiles suggesting an electrophilic process which proceeds via a coordination complex (adduct) undergoing deprotonation by a bound or an external base depending on the used PdII precursor. Slow step of the first palladation for two chloride precursors and [Pd(MeCN)4][BF4]2 is the C−H bond cleavage whereas palladation using [Pd(OAc)2]3 depends primarily on breaking of its trimeric structure by the azobenzene substrate and/or liquid additives. The mechanism of the C−H bond activation by various PdII catalysts under milling conditions is studied by in situ Raman and ex situ IR, NMR and PXRD methods. Reaction dynamics, intermediates involved in the reaction and effects of liquid and solid additives have been identified using spectroscopic data as well as the reaction profiles obtained from the analysis of the in situ Raman data.
Bibliography:These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201802403