Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations

Developing highly active, stable, and conductive bifunctional oxygen reduction (ORR) and oxygen evolution (OER) catalysts is a key step for fuel cells and metal–air batteries. Herein, an effective idea for designing bifunctional catalysts is presented by regulating the surface electronic structures...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 6; pp. 3097 - 3108
Main Authors Kan, Dongxiao, Wang, Dashuai, Zhang, Xilin, Lian, Ruqian, Xu, Jing, Chen, Gang, Wei, Yingjin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing highly active, stable, and conductive bifunctional oxygen reduction (ORR) and oxygen evolution (OER) catalysts is a key step for fuel cells and metal–air batteries. Herein, an effective idea for designing bifunctional catalysts is presented by regulating the surface electronic structures of Nb2CT2 (T = O, F, and OH) using Pt/Pd single atoms. The results indicated that Pt-doped systems (Nb2CO2–VO–Pt, Nb2CF2–VF–Pt) were the most promising bifunctional ORR/OER catalysts. In particular, Nb2CF2–VF–Pt was even better than landmark Pt(111) and IrO2(110) catalysts, with relatively low overpotentials of 0.40 V and 0.37 V for ORR and OER, respectively. The high catalytic nature of Nb2CF2–VF–Pt was explained by electronic structures, volcano plots, and charge transfer mechanisms, which mainly depended on the electron donor capacity and synergistic effects from F-terminated groups and Pt noble metals. Moreover, 100% utilization of Pt was achieved for the designed bifunctional catalysts with a minimum radius between two adjacent active centers. This was the first design of a bifunctional ORR/OER catalyst based on Nb2CT2 and highlighted a new perspective on the application of MXenes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2050-7488
2050-7496
2050-7496
DOI:10.1039/c9ta12255a