Design and fabrication of electrospun SBA-15-incorporated PVA with curcumin: a biomimetic nanoscaffold for skin tissue engineering
Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nano...
Saved in:
Published in | Biomedical materials (Bristol) Vol. 15; no. 3; p. 035009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
05.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nanoscaffold for skin tissue engineering. Curcumin was selected due to its effective anti-microbial and anti-inflammatory properties. SBA-15 was selected for its characteristic drug-carrying potential. Fourier transform infrared spectroscopy and x-ray diffraction characterizations of the fabricated nanofiber demonstrated the interaction of PVA, SBA-15 and curcumin. The scanning electron microscopy results depicted that the nanofiber was highly interconnected with a porous structure mimicking the extracellular matrix. The nanofibrous scaffold showed a higher percentage of cell migration, proliferation, cytocompatibility and biocompatibility with absence of cytotoxicity which was evidenced from the results of MTT assay, cell adhesion and live/dead assay using HaCaT cells. The results of the anti-bacterial test depicted that the synthesized nanofiber forms a potent material for skin wound-healing therapeutics. The in vitro drug release study performed over a period of 80 h revealed a sustained release pattern of curcumin from the SBA-15-incorporated PVA nanofiber. Finally, the in vivo results confirmed that SBA-15-incorporated PVA nanofiber with curcumin showed efficient wound-healing activities. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Correction/Retraction-3 |
ISSN: | 1748-605X |
DOI: | 10.1088/1748-605X/ab6b2f |