Design and fabrication of electrospun SBA-15-incorporated PVA with curcumin: a biomimetic nanoscaffold for skin tissue engineering

Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nano...

Full description

Saved in:
Bibliographic Details
Published inBiomedical materials (Bristol) Vol. 15; no. 3; p. 035009
Main Authors Rathinavel, Saranya, Ekambaram, Shoba, Korrapati, Purna Sai, Sangeetha, Dharmalingam
Format Journal Article
LanguageEnglish
Published England 05.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nanoscaffold for skin tissue engineering. Curcumin was selected due to its effective anti-microbial and anti-inflammatory properties. SBA-15 was selected for its characteristic drug-carrying potential. Fourier transform infrared spectroscopy and x-ray diffraction characterizations of the fabricated nanofiber demonstrated the interaction of PVA, SBA-15 and curcumin. The scanning electron microscopy results depicted that the nanofiber was highly interconnected with a porous structure mimicking the extracellular matrix. The nanofibrous scaffold showed a higher percentage of cell migration, proliferation, cytocompatibility and biocompatibility with absence of cytotoxicity which was evidenced from the results of MTT assay, cell adhesion and live/dead assay using HaCaT cells. The results of the anti-bacterial test depicted that the synthesized nanofiber forms a potent material for skin wound-healing therapeutics. The in vitro drug release study performed over a period of 80 h revealed a sustained release pattern of curcumin from the SBA-15-incorporated PVA nanofiber. Finally, the in vivo results confirmed that SBA-15-incorporated PVA nanofiber with curcumin showed efficient wound-healing activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Correction/Retraction-3
ISSN:1748-605X
DOI:10.1088/1748-605X/ab6b2f