High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries
Flower-like antimony sulfide structures were prepared by a simple and easy polyol reflux process. When tested as an anode for sodium ion batteries, the material delivered a high reversible capacity of 835.3 mA h g(-1) at 50 mA g(-1) after 50 cycles and maintained a capacity of 641.7 mA h g(-1) at 20...
Saved in:
Published in | Nanoscale Vol. 7; no. 7; pp. 3309 - 3315 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.02.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | Flower-like antimony sulfide structures were prepared by a simple and easy polyol reflux process. When tested as an anode for sodium ion batteries, the material delivered a high reversible capacity of 835.3 mA h g(-1) at 50 mA g(-1) after 50 cycles and maintained a capacity of 641.7 mA h g(-1) at 200 mA g(-1) after 100 cycles. Even up to 2000 mA g(-1), a capacity of 553.1 mA h g(-1) was obtained, indicating an excellent cycle performance and a superior rate capability. The mechanism of the formation of the micro-flowers was also investigated. The additive used facilitates the controlled release of the reactant to form uniform, shaped nanosheets and an optimum reaction time allows the nanosheets to self-assemble into micro-flowers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2040-3372 |
DOI: | 10.1039/c4nr05242k |