NEMo: An Evolutionary Model with Modularity for PPI Networks
Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary dr...
Saved in:
Published in | Bioinformatics Research and Applications pp. 224 - 236 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2016
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Modelling the evolution of biological networks is a major challenge. Biological networks are usually represented as graphs; evolutionary events include addition and removal of vertices and edges, but also duplication of vertices and their associated edges. Since duplication is viewed as a primary driver of genomic evolution, recent work has focused on duplication-based models. Missing from these models is any embodiment of modularity, a widely accepted attribute of biological networks. Some models spontaneously generate modular structures, but none is known to maintain and evolve them.
We describe NEMo (Network Evolution with Modularity), a new model that embodies modularity. NEMo allows modules to emerge and vanish, to fission and merge, all driven by the underlying edge-level events using a duplication-based process. We introduce measures to compare biological networks in terms of their modular structure and use them to compare NEMo and existing duplication-based models and to compare both generated and published networks. |
---|---|
ISBN: | 9783319387819 3319387812 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-38782-6_19 |