Water-tolerant zeolite catalyst for the acetalisation of glycerol

We studied the acid-catalysed reaction of glycerol with aqueous formaldehyde and acetone in absence of solvents and using heterogeneous catalysts. The reactivity of acetone was usually higher than formaldehyde and the glycerol conversion was over 90% within 40 min of reaction time for all the hetero...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 11; no. 1; pp. 38 - 41
Main Authors da Silva, Carolina XA, Goncalves, Valter LC, Mota, Claudio JA
Format Journal Article
LanguageEnglish
Published 01.01.2009
Online AccessGet full text

Cover

Loading…
More Information
Summary:We studied the acid-catalysed reaction of glycerol with aqueous formaldehyde and acetone in absence of solvents and using heterogeneous catalysts. The reactivity of acetone was usually higher than formaldehyde and the glycerol conversion was over 90% within 40 min of reaction time for all the heterogeneous acid catalysts studied. With aqueous formaldehyde solution, the glycerol conversion was within 60 to 80%, depending upon the acid catalyst used (Amberlyst-15, K-10 montmorillonite, p-toluene-sulfonic acid), due to the high amount of water in the reaction medium, which shifts the equilibrium and weakens the acid sites. However, the use of zeolite Beta, with Si/Al ratio of 16, leads to a conversion of over 95% within 60 min of reaction time. The hydrophobic character of the zeolite, due to the high silicon content, prevents the diffusion of the water to the interior of the pore, preserving the strength of the acid sites. In addition, the water formed during the acetalisation is expelled off from the pore environment, impairing the reverse reaction, and avoiding the use of hazard solvents, commonly employed to distil off the water formed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9262
DOI:10.1039/B813564A