Bipolar resistive switching in HoCrO3 thin films

We report on the resistive switching characteristics of an HoCrO3 (HCO) based memristor device. The device comprising Ag/HCO/fluorine doped tin oxide shows stable bipolar resistive switching with a good ON/OFF resistance ratio between high resistance state (HRS) and low resistance state (LRS). Furth...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 31; no. 35; p. 355202
Main Authors Sahu, Dwipak Prasad, Jammalamadaka, S Narayana
Format Journal Article
LanguageEnglish
Published England IOP Publishing 28.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report on the resistive switching characteristics of an HoCrO3 (HCO) based memristor device. The device comprising Ag/HCO/fluorine doped tin oxide shows stable bipolar resistive switching with a good ON/OFF resistance ratio between high resistance state (HRS) and low resistance state (LRS). Furthermore, the device is capable to show excellent endurance and retentivity characteristics over a period of 30 days. The statistical distribution of the switching parameters (voltage and resistance) show a narrow distribution, hinting reliable memory performance and stability of the device. Impedance spectroscopy analysis of the HRS and LRS illustrates a bulk resistance effect, which is due to formation of multiple ionic conductive channels in the film with oxygen vacancies. Indeed, conducting channels formed by oxygen vacancies are further confirmed by calculating the temperature coefficient of resistance through resistance vs temperature measurements. We believe that these results will be helpful in developing future memory devices based on resistive switching.
Bibliography:NANO-125815
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ab9328