Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light

The construction of a multifunctional two-dimensional (2D) composite photocatalyst is of great significance because such a composite can exhibit enhanced catalytic performance and improved practical usability in contrast to a single component catalyst. Herein, a ternary photocatalyst composed of g-C...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 8; no. 14; pp. 3484 - 3492
Main Authors Ding, Xing, Xiao, Dong, Ji, Lei, Ding, Jin, Dai, Ke, Yang, Zixin, Wang, Shengyao, Chen, Hao
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The construction of a multifunctional two-dimensional (2D) composite photocatalyst is of great significance because such a composite can exhibit enhanced catalytic performance and improved practical usability in contrast to a single component catalyst. Herein, a ternary photocatalyst composed of g-C3N4, a carbon layer (C), and Fe3O4 nanoparticles was successfully synthesized by a facile one-pot hydrothermal carbonization (HTC) method from g-C3N4, glucose, and FeCl3. The resultant composite, Fe3O4/C/g-C3N4, had an ordered 2D heterostructure and exhibited enhanced visible-light-driven photocatalytic performances and good magnetic recyclability. The kobs for Cr(vi) photoreduction (or dimethoate photodegradation) over Fe3O4/C/g-C3N4 was 20.9-fold (or 2.1-fold) of that over g-C3N4. Comparative study of Fe3O4/C/g-C3N4, C/g-C3N4, and g-C3N4 on their optoelectronic properties revealed that this enhanced photocatalytic activity was mainly due to rapid photogenerated electron transport from the g-C3N4 component to carbon and/or Fe3O4, which effectively suppressed the recombination of photogenerated electrons and holes. In addition, the good surface adsorption capacity of the carbon component towards Cr(vi) also contributed to Cr(vi) photoreduction over Fe3O4/C/g-C3N4. Finally, a reasonable photocatalytic reaction mechanism of Fe3O4/C/g-C3N4 was proposed based on the results of trapping experiments. This study is not only limited to developing a high-performance g-C3N4 based photocatalyst, but also expected to provide a green, facile, and cost-efficient strategy to combine 2D materials with a carbonaceous layer and other functional components for a multifunctional system.
ISSN:2044-4753
2044-4761
DOI:10.1039/c8cy00698a