Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and [alpha]-Hemolysin Production in Staphylococcus aureus Isolates

Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 3; p. e9736
Main Authors Qiu, Jiazhang, Wang, Dacheng, Xiang, Hua, Feng, Haihua, Jiang, Youshuai, Xia, Lijie, Dong, Jing, Lu, Jing, Yu, Lu, Deng, Xuming
Format Journal Article
LanguageEnglish
Published Public Library of Science 17.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., [alpha]-hemolysin and enterotoxins) by S. aureus. Secretion of [alpha]-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF) release assays were performed to elucidate the biological relevance of changes in [alpha]-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding [alpha]-hemolysin, SEA and SEB, respectively) was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of [alpha]-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. Subinhibitory concentrations of thymol decreased the production of [alpha]-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with [beta]-lactams and glycopeptide antibiotics, which induce expression of [alpha]-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0009736