In vivo regulation of hepatic lipase activity and mRNA levels by diets which modify cholesterol influx to the liver

The aim of this study was to assess whether diets enriched in cholesterol, sodium cholate and drugs known to modify liver cholesterol biosynthesis can modulate hepatic lipase (H-TGL) expression and activity in vivo. Female lean Zucker rats, known to be good responders to cholesterol, were fed for 7...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1211; no. 2; pp. 181 - 188
Main Authors Benhizia, F, Lagrange, D, Malewiak, M.I, Griglio, S
Format Journal Article
LanguageEnglish
Published Netherlands 03.03.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to assess whether diets enriched in cholesterol, sodium cholate and drugs known to modify liver cholesterol biosynthesis can modulate hepatic lipase (H-TGL) expression and activity in vivo. Female lean Zucker rats, known to be good responders to cholesterol, were fed for 7 days with a control C diet or the C diet supplemented (w/w) with either 2% cholesterol, 0.5% sodium cholate, 2% cholestyramine or simvastatin (0.1%) added to the cholestyramine diet or given by gavage (10 mg/rat) for 3 days. H-TGL activity decreased by 34% with cholesterol, and by 27% when both cholesterol and cholate were administered to the rats. Under these conditions, H-TGL mRNA decreased by 34% and 87%, respectively. The sharp decrease in H-TGL expression was associated with a strong increase in cholesteryl ester in total liver and in the liver microsome fraction. H-TGL activity decreased by 33% with cholestyramine and the mRNA level decreased by 47%. Simvastatin lowered H-TGL activity by 55% when added to the cholestyramine diet, probably because of a reduction in food intake. When administrated by gavage, simvastatin increased both the H-TGL activity (by 28%) and mRNA (by 23%). These variations may be linked to the availability of mevalonate-derived sterol and non-sterol products.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3002
1878-2434