Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome

Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the p...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 19; no. 19; pp. 4255 - 4264
Main Authors Herranz, Raul, Benguria, Alberto, Lavan, David A, Lopez-Vidriero, Irene, Gasset, Gilbert, Javier Medina, F, Loon, Jack J.W.A. van, Marco, Roberto
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2010
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression.
Bibliography:http://dx.doi.org/10.1111/j.1365-294X.2010.04795.x
istex:DDBFF5E56E1E5FA0AD2116E93250C80B718DF628
ArticleID:MEC4795
ark:/67375/WNG-07V0MGP7-D
Our colleague and friend Professor Roberto Marco passed away June 27th, 2008. This paper, his last contribution to Space Biology, is affectionately dedicated to his memory.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0962-1083
1365-294X
1365-294X
DOI:10.1111/j.1365-294X.2010.04795.x