Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots

Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N₂or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induce...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 38; no. 3; pp. 433 - 447
Main Authors PEUKE, ANDREAS D, GESSLER, ARTHUR, TRUMBORE, SUSAN, WINDT, CAREL W, HOMAN, NATALIA, GERKEMA, EDO, VAN AS, HENK
Format Journal Article
LanguageEnglish
Published United States Blackwell Scientific Publications 01.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N₂or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non‐invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ¹³C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N₂treatment. However, volume flow and phloem sap sugar tended to recover during the N₂treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.
Bibliography:http://dx.doi.org/10.1111/pce.12399
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0140-7791
1365-3040
1365-3040
DOI:10.1111/pce.12399