Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers

The effects of alpha-cyclodextrin-horseradish oil complex (CD-HR) on methane production and ruminal fermentation were studied in vitro and in steers. In the in vitro study, diluted ruminal fluid (30 mL) was incubated anaerobically at 38 degrees C for 6 h with or without CD-HR, using cornstarch as su...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 82; no. 6; pp. 1839 - 1846
Main Authors Mohammed, N, Ajisaka, N, Lila, Z.A, Hara, K, Mikuni, K, Kanda, S, Itabashi, H
Format Journal Article
LanguageEnglish
Published Savoy, IL Am Soc Animal Sci 01.06.2004
American Society of Animal Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of alpha-cyclodextrin-horseradish oil complex (CD-HR) on methane production and ruminal fermentation were studied in vitro and in steers. In the in vitro study, diluted ruminal fluid (30 mL) was incubated anaerobically at 38 degrees C for 6 h with or without CD-HR, using cornstarch as substrate. The CD-HR was added at various concentrations (0, 0.17, 0.85 and 1.7 g/L). Treatment affected neither the pH of the medium nor the number of protozoa. Total VFA increased in a linear manner (P = 0.02), and NH3-N decreased quadratically (P = 0.04) as the concentration of CD-HR increased from 0.17 g/L to 1.7 g/L. Molar proportions of acetate decreased in a linear manner (P = 0.03), and propionate increased linearly (P = 0.008) with increasing concentrations of CD-HR. Production of methane was inhibited up to 90%, whereas accumulation of dihydrogen was increased 36-fold by 1.7 g/L of CD-HR supplementation relative to controls. The effect of CD-HR on methane production, ruminal fermentation and microbes, and digestibility was further investigated in vivo using four Holstein steers in a crossover design. The CD-HR supplement was mixed into the concentrate portion of a (1.5:1) Sudangrass hay plus concentrate mixture that was fed twice daily to the steers. Ruminal samples were collected 0, 2, and 5 h after the morning feeding. No effects of CD-HR supplementation on ruminal pH (P = 0.63) or protozoal numbers (P = 0.44) were observed. Molar proportion of acetate was decreased (P = 0.04) and propionate was increased (P = 0.005) by CD-HR treatment. Molar proportion of butyrate was increased (P = 0.05) in CD-HR-supplemented steers. Ruminal NH3-N was decreased (P = 0.05) by treatment. Blood plasma glucose concentration was increased (P = 0.02) and urea-N was decreased (P = 0.04) with CD-HR supplementation. Daily DMI was decreased (P = 0.04), and apparent digestibility of DM (P = 0.13), NDF (P = 0.14), and CP tended (P = 0.14) to be increased by treatment. Methane production was decreased (P = 0.03) by 19%, and the number of methanogens was also decreased (P = 0.03). Although N retention (P = 0.11), total viable bacteria (P = 0.15), and sulfate-reducing bacteria (P = 0.17) were not significantly altered by treatment, tendencies for increases were noted with CD-HR supplementation. The number of cellulolytic (P = 0.38) and acetogenic bacteria (P = 0.32) remained unchanged by treatment. These results indicate that CD-HR supplementation can be used to decrease methane production in steers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
DOI:10.2527/2004.8261839x