mitogen-activated protein kinase pathway contributes to vanadate toxicity in vascular smooth muscle cells

Vanadate has been considered in the treatment of diabetes because of its insulin-like effects. However, it has severe toxic effects in both animal and man. In cultured cells, vanadate can either cause death or be growth stimulatory, depending on the cell type and growth conditions. Here, we report t...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 183; no. 1/2; pp. 97 - 103
Main Authors Daum, G, Levkau, B, Chamberlain, N.L, Wang, Y, Clowes, A.W
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.06.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vanadate has been considered in the treatment of diabetes because of its insulin-like effects. However, it has severe toxic effects in both animal and man. In cultured cells, vanadate can either cause death or be growth stimulatory, depending on the cell type and growth conditions. Here, we report that in baboon aortic smooth muscle cells (SMCs), vanadate induced p42/p44 mitogen-activated protein kinase (MAPK) activity. This effect was abolished in the presence of the specific MAPK kinase (MAPKK) inhibitor PD098059. Although activation of p42/p44MAPK/MAPKK is generally thought to be necessary for proliferation, in SMCs, vanadate did not promote DNA synthesis and inhibited thymidine incorporation stimulated by platelet-derived growth factor (PDGF)-BB in a dose dependent fashion (IC50: 30 microM). Prolonged exposure to vanadate exerted cytotoxic effects. Cells retracted, rounded up and detached from the substratum. These vanadate-induced morphological changes were blocked in the presence of PD098059. The addition of PDGF-BB further activated p42/p44MAPK/MAPKK in the presence of vanadate and substantially increased vanadate toxicity. We conclude from these observations that activation of the p42/p44MAPK/MAPKK signalling module contributes to the cytotoxic effects induced by vanadate.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1023/A:1006820214072