Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice

Cyclic ADP-ribose (cADPR) serves as a second messenger for Ca2+ mobilization in insulin secretion, and CD38 has both ADP-ribosyl cyclase and cADPR hydrolase activities (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268,...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 50; pp. 30045 - 30050
Main Authors Kato, I, Takasawa, S, Akabane, A, Tanaka, O, Abe, H, Takamura, T, Suzuki, Y, Nata, K, Yonekura, H, Yoshimoto, T
Format Journal Article
LanguageEnglish
Published United States 15.12.1995
Subjects
adn
dna
men
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cyclic ADP-ribose (cADPR) serves as a second messenger for Ca2+ mobilization in insulin secretion, and CD38 has both ADP-ribosyl cyclase and cADPR hydrolase activities (Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H., and Okamoto, H. (1993) J. Biol. Chem. 268, 26052-26054). Here, we produced transgenic mice overexpressing human CD38 in pancreatic 13 cells. The enzymatic activity of CD38 in transgenic islets was greatly increased, and ATP efficiently inhibited the cADPR hydrolase activity. The Ca2+ mobilizing activity of cell extracts from transgenic islets incubated in high glucose was 3-fold higher than that of the control, suggesting that ATP produced by glucose metabolism increased cADPR accumulation in transgenic islets. Glucose- and ketoisocaproate-induced but not tolbutamide- nor KCl-induced insulin secretions from transgenic islets were 1.7-2.3-fold higher than that of control. In glucose-tolerance tests, the transgenic serum insulin level was higher than that of control. The present study provides the first evidence that CD38 has a regulatory role in insulin secretion by glucose in 13 cells, suggesting that the Ca2+ release from intracellular cADPR-sensitive Ca2+ stores as well as the Ca2+ influx from extracellular sources play important roles in insulin secretion.
Bibliography:S20
S
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.50.30045