Sow and litter response to supplemental dietary fat in lactation diets during high ambient temperatures

The objective of this experiment was to determine the impact of supplemental dietary fat on total lactation energy intake and sow and litter performance during high ambient temperatures (27 ± 3°C). Data were collected from 337 mixed-parity sows from July to September in a 2,600-sow commercial unit i...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 90; no. 2; pp. 550 - 559
Main Authors Rosero, D. S, van Heugten, E, Odle, J, Cabrera, R, Arellano, C, Boyd, R. D
Format Journal Article
LanguageEnglish
Published United States American Society of Animal Science 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of this experiment was to determine the impact of supplemental dietary fat on total lactation energy intake and sow and litter performance during high ambient temperatures (27 ± 3°C). Data were collected from 337 mixed-parity sows from July to September in a 2,600-sow commercial unit in Oklahoma. Diets were corn-soybean meal-based with 7.5% corn distillers dried grains with solubles and 6.0% wheat middlings and contained 3.24 g of standardized ileal digestible Lys/Mcal of ME. Animal-vegetable fat blend (A-V) was supplemented at 0, 2, 4, or 6%. Sows were balanced by parity, with 113, 109, and 115 sows representing parity 1, 2, and 3 to 7 (P3+), respectively. Feed disappearance (subset of 190 sows; 4.08, 4.18, 4.44, and 4.34 kg/d, for 0, 2, 4, and 6%, respectively; P < 0.05) and apparent caloric intake (12.83, 13.54, 14.78, and 14.89 Mcal of ME/d, respectively; P < 0.001) increased linearly with increasing dietary fat. Gain:feed (sow and litter BW gain relative to feed intake) was not affected (P = 0.56), but gain:Mcal ME declined linearly with the addition of A-V (0.16, 0.15, 0.15, and 0.14 for 0, 2, 4, and 6%, respectively; P < 0.01). Parity 1 sows (3.95 kg/d) had less (P < 0.05) feed disappearance than P2 (4.48 kg/d) and P3+ (4.34 kg/d) sows. Body weight change in P1 sows was greater (P < 0.01) than either P2 or P3+ sows (–0.32 vs. –0.07 and 0.12 kg/d), whereas backfat loss was less (P < 0.05) and loin depth gain was greater (P < 0.05) in P3+ sows compared with P1 and P2 sows. Dietary A-V improved litter ADG (P < 0.05; 1.95, 2.13, 2.07, and 2.31 kg/d for 0, 2, 4, and 6% fat, respectively) only in P3+ sows. Sows bred within 8 d after weaning (58.3, 72.0, 70.2, and 74.7% for 0, 2, 4, and 6%, respectively); conception rate (78.5, 89.5, 89.2, and 85.7%) and farrowing rate (71.4, 81.4, 85.5, and 78.6%) were improved (P < 0.01) by additional A-V, but weaning-to-breeding interval was not affected. Rectal and skin temperature and respiration rate of sows were greater (P < 0.002) when measured at wk 3 compared with wk 1 of lactation, but were not affected by A-V addition. Parity 3+ sows had lower (P < 0.05) rectal temperature than P1 and P2 sows, and respiration rate was reduced (P < 0.001) in P1 sows compared with P2 and P3+ sows. In conclusion, A-V improved feed disappearance and caloric intake, resulting in improved litter weight gain and subsequent reproductive performance of sows; however, feed and caloric efficiency were negatively affected.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2011-4049