Dynamics of sperm DNA fragmentation in domestic animals : III. Ram
From a biological viewpoint spermatozoa are ejaculated by the male and received into the female while maintaining roughly constant temperature, which in most mammals is below the temperature of the soma. When ejaculated spermatozoa are used for artificial reproductive purposes a temperature excursio...
Saved in:
Published in | Theriogenology Vol. 70; no. 6; pp. 898 - 908 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
[Oxford]: Butterworth-Heinemann; [New York]: Elsevier Science
01.10.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | From a biological viewpoint spermatozoa are ejaculated by the male and received into the female while maintaining roughly constant temperature, which in most mammals is below the temperature of the soma. When ejaculated spermatozoa are used for artificial reproductive purposes a temperature excursion episode is produced, because the spermatozoa are often stored as frozen or chilled samples and the biological temperature is only recovered after insemination. In this study we have analyzed the effects of cooling (to 15°C) and freezing ram spermatozoa on the subsequent sperm DNA fragmentation index (sDFI) during a varying period of storage at 37°C. The aim was to emulate in vivo processes that cooled or frozen-thawed spermatozoa experience after insemination. The study was performed using commercial semen samples derived from rams regularly used for reproductive purposes. Semen samples were studied after a cooling or cryopreservation episode followed by biological temperature recovery and incubation up to 48h. The results indicated that when spermatozoa experience a severe (frozen) or mild (cooled) temperature excursion episode, major effects on sperm viability and DNA fragmentation are induced and cause the subsequent rapid decline of ram sperm quality. This effect could be detected just at the onset of the biological temperature recovery. Sperm DNA damage in cooled samples was observed after 5h of incubation at 37°C, while this time was reduced to less than 60min in frozen-thaw samples. The dynamics of sDFI in different animals, analyzed under the same experimental conditions, was different from one sample to another, regardless of the method used for storage. Sperm viability was better preserved in cooled rather than in frozen samples. While for the frozen-thawed samples sperm viability was almost abolished after 5h of incubation, a stable proportion of viable spermatozoa (ranging from 20% to 60%) was observed in the cooled samples at the corresponding time points. Finally, with respect to the prevalence of sDFI in ram, the level commonly found was lower than 5% at the onset of the experiment. However, sDFI was higher than 5% in 25% of the samples and in 15% of rams this index exceeded 10%. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.theriogenology.2008.04.055 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0093-691X 1879-3231 |
DOI: | 10.1016/j.theriogenology.2008.04.055 |