Physical characteristics of starch granules and susceptibility to enzymatic degradation
Starch, the most abundant component of the diet, is characterized by its variety as well as the versatility of its derivatives in foods. This paper is an overview of the main physical characteristics of the native starch granule. Three different levels of organization are presented: macromolecular s...
Saved in:
Published in | European journal of clinical nutrition Vol. 46; pp. S3 - S16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.10.1992
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Starch, the most abundant component of the diet, is characterized by its variety as well as the versatility of its derivatives in foods. This paper is an overview of the main physical characteristics of the native starch granule. Three different levels of organization are presented: macromolecular structure, crystalline organization and ultrastructure. Starch consists of amylose and amylopectin. Amylose is an essentially linear polymer composed of alpha-1,4-linked D-anhydroglucose units (AGU); amylopectin is a branched polymer clustering a large amount of short linear chains by the linkage of alpha-1,6-bonds, constituting about 5% of the total glycosidic bonds. In the native starch granules, a large number of the macromolecular chains are organized in crystalline structures. Three forms have been found, the A, B and C patterns. So far only A and B starch crystals have been modelled. There is a variation in the susceptibility of the starch granules to enzymatic digestion. This is explained by variation in the morphology of the granules and their crystalline organization. |
---|---|
ISSN: | 0954-3007 1476-5640 |